Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints.

نویسندگان

  • C H Westphal
  • C Schmaltz
  • S Rowan
  • A Elson
  • D E Fisher
  • P Leder
چکیده

Ataxia-telangiectasia and Li-Fraumeni syndrome, pleiotropic disorders caused by mutations in the genes atm and p53, share a marked increase in cancer rates. A number of studies have argued for an interaction between these two genes (for comprehensive reviews, see M. S. Meyn, Cancer Res., 55: 5991-6001, 1995, and M. F. Lavin and Y. Shiloh, Annu. Rev., Immunol., 15: 177-202, 1996). Specifically, atm is placed upstream of p53 in mediating G1-S cell cycle checkpoint control, and both atm and p53 are believed to influence cellular proliferation. To analyze the genetic interactions of atm and p53, mouse embryonic fibroblasts (MEFs) homozygously deficient for both atm and p53 were used to assess cell cycle and growth control. These double-null fibroblasts proliferate rapidly and fail to exhibit the premature growth arrest seen with atm-null MEFs. MEFs null for both atm and p53 do not express any p21(cipl/wafl), showing that p53 is required for p21(cipl/wafl) expression in an atm-null background. By contrast, homozygous loss of either atm, p53, or both results in similar abnormalities of the irradiation-induced G1-S cell cycle checkpoint. Our results suggest two separate pathways of interaction between atm and p53, one linear, involving G1-S cell cycle control, and another more complex, involving aspects of growth regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Interactions between atm and p53 Influence Cellular Proliferation and Irradiation-induced Cell Cycle Checkpoints1

Ataxia-telangiectasia and Li-Fraumeni syndrome, pleiotropic disorders caused by mutations in the genes aim andp53, share a marked increase in cancer rates. A number of studies have argued for an interaction between these two genes (for comprehensive reviews, see M. S. Meyn, Cancer Res., 55: 5991—6001,995, and M. F. Lavin and Y. Shiloh, Annu. Rev., Immu noL, 15: 177—202,1996). Specifically, ...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm-/- mice.

Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atm-/- p53(-/-) mice develop lymphomas earlier than Atm-/- or p53(-/-) mice, indicating that...

متن کامل

The controlling role of ATM in homologous recombinational repair of DNA damage.

The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along wi...

متن کامل

PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints.

The ATM (ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia and Rad3-related) kinases respond to DNA damage by phosphorylating cellular target proteins that activate DNA repair pathways and cell cycle checkpoints in order to maintain genomic integrity. Here we show that the oncogenic p53-induced serine/threonine phosphatase, PPM1D (or Wip1), dephosphorylates two ATM/ATR targets, Chk1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 57 9  شماره 

صفحات  -

تاریخ انتشار 1997